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Self-Supervised Cyclic Diffeomorphic Mapping
for Soft Tissue Deformation Recovery

in Robotic Surgery Scenes
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Abstract— The ability to recover tissue deformation from
visual features is fundamental for many robotic surgery ap-
plications. This has been a long-standing research topic in
computer vision, however, is still unsolved due to complex
dynamics of soft tissues when being manipulated by sur-
gical instruments. The ambiguous pixel correspondence
caused by homogeneous texture makes achieving dense
and accurate tissue tracking even more challenging. In this
paper, we propose a novel self-supervised framework to
recover tissue deformations from stereo surgical videos.
Our approach integrates semantics, cross-frame motion
flow, and long-range temporal dependencies to enable the
recovered deformations to represent actual tissue dynam-
ics. Moreover, we incorporate diffeomorphic mapping to
regularize the warping field to be physically realistic. To
comprehensively evaluate our method, we collected stereo
surgical video clips containing three types of tissue ma-
nipulation (i.e., pushing, dissection and retraction) from
two different types of surgeries (i.e., hemicolectomy and
mesorectal excision). Our method has achieved impressive
results in capturing deformation in 3D mesh, and gen-
eralized well across manipulations and surgeries. It also
outperforms current state-of-the-art methods on non-rigid
registration and optical flow estimation. To the best of our
knowledge, this is the first work on self-supervised learning
for dense tissue deformation modeling from stereo surgical
videos. Our code will be released.

Index Terms— soft-tissue deformation recovery, robotic
surgery, diffeomorphic mapping, cycle consistency

I. INTRODUCTION

Soft tissue deformation is everywhere in minimally in-
vasive interventions performed by surgical robots [1]. Re-
covery of such deformation in real-time is fundamental
for various downstream applications including quantification
of instrument-tissue interaction [2], evaluation of surgical
skills [3], estimation of anatomy biomechanical property [4],
automation of soft-tissue manipulation [5], [6], etc. Aiming
to represent the 3D geometry of tissue and further track its
continuous changes over time, soft tissue deformation recovery
has been a long-standing research topic in computer vision
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Fig. 1. Illustration of the soft tissue deformation recovery task with
examples of different manipulations. Our method represents the learned
deformation field in 3D.

and computer-assisted surgery [1]. Despite being studied over
a decade, it is still largely unsolved given challenges from
complex dynamics in tissue manipulation, scene occlusions by
surgical instruments, the unstructured environment in surgery,
changes of illuminations, and artifacts of reflection.

Early methods adopted multi-sensory inputs to compensate
visual information with tactile or force sensors [7], [8], how-
ever, these sensors are still not equippable to robotic systems
for real surgeries. The current research trend is to explore
methods of purely vision-based deformation modeling. For in-
stance, Lagneau et al. [9] utilized a model-free visual servoing
method to manipulate soft objects towards a desired shape. Li
et al. [5] proposed a surgical perception framework that maps a
deformation field with geometric information. These methods,
however, represent the deformation in a parameterized way
designed exclusively for visual servoing, which limits their
potential for wider applications.

For a deformation recovery method to be considered qual-
ified, not only should the recovered deformation reflect the
correct tissue motion patterns, but also it adheres to primary
physical rules. In other words, it should achieve both temporal-
consistency and physical-plausibility. However, existing meth-
ods to recover 3D tissue deformation often fail to meet one or
both criteria. Giannarou et al. [10] recovered the deformation
field based on 3D thin-plate splines interpolation with Harris-
Laplace matching. Zhou et al. [11] employed ORB feature
matching to assist non-rigid iterative closest points. However,
as sparse feature-based methods, homogeneous textures in
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surgical scenes make it hard to select informative feature
points that reflect semantics. The partial observability due
to occlusions and motion blur makes it more difficult to
continuously track features over time, thus struggling to
maintain temporal consistency. To address these limitations,
several studies [12]–[14] have attempted to seek denser cor-
respondence to achieve better temporal-consistency. However,
the correspondence is established purely based on adjacent
frames, failing to make use of long-term dependencies. In
addition, dense mapping solely based on pixel values from
homogeneous textures lacks semantic awareness and topology
sensitivity, which makes the matching unrealistic and results
in intersections or extreme displacements. This issue can be
particularly problematic in situations that prioritize physical-
plausibility, such as biomechanical quantification.

Recently, learning-based methods for deformation estima-
tion and modeling have made promising progress in related
tasks such as video reconstruction and image registration.
This inspired us to learn the deformation field directly from
data instead of relying on parameterized deformation models,
thereby supporting more flexible and complex deformation and
allowing for explicitly modeling 3D deformations. However,
previous performance gain usually relies on strong supervision
signals, such as requiring a large amount of synthetic data
with ground truth labels [15], [16] or manual annotation of
the landmark feature points [17], [18]. To reduce labeling cost
which is often expensive in surgical scenarios, we consider
recovering tissue deformations by purely learning from raw
data without using any manual annotations. The technical
challenges rooted in the intricate tool-tissue interaction that
causes high complexity in deformation, but self-supervised
models for semantics and motion extraction are promising.

In this paper, we propose a novel self-supervised framework
for soft tissue deformation recovery of robotic surgery videos.
To achieve this goal, we design a cyclic mechanism that
prompts the learning of deformation over time from vision
inputs explicitly. Furthermore, we combine semantics, inter-
frame pixel-wise motion flow, and long-range temporal context
to accurately estimate the deformation field, ensuring that the
recovered deformation reflects actual tissue movements. More
importantly, to encourage a physical-plausible deformation,
we leverage diffeomorphic mapping to represent the tissue
deformations, which can intrinsically enforce primary phys-
ical properties of the deformation field, such as topology-
preserving and invertibility. To evaluate our method, we collect
a dataset of robotic surgery videos and cut them into shorter
clips, with each clip representing a complete manipulation
action (see Fig. 1). The experimental results, both quantita-
tively and qualitatively, show that our approach can achieve
impressive deformation recovery performance, surpassing all
comparison methods. Our contributions are summarized as
follows:

• We present a novel self-supervised learning framework
to recover soft tissue deformation from surgical stereo
videos, for the first time, to simultaneously emphasize
both temporal-consistency and physical-plausibility.

• We design an effective scheme to integrate semantics,
inter-frame flow, and long-range temporal information to

model a sequence of deformation fields in real-time.
• We evaluate our approach on a robotic surgery dataset,

demonstrating that such data-driven deformation mod-
eling is generalizable across different types of tissue
manipulations and surgical procedures.

II. RELATED WORK

Soft tissue deformation recovery. Accurate modeling of the
3D motion of soft tissue in dynamic scenes is a fundamental
yet challenging problem. Tissue deformation can be caused by
the cardiac or respiratory cycle, tissue tool interaction, or mus-
cular contraction [1]. Deformation caused by physiological cy-
cles can be modeled as quasi-periodic or periodic signals [19],
such as Fourier series [20], vector auto-regressive models [20],
and Taken’s theorem [21]. For non-periodic deformation, op-
tical video-based methods through minimization of non-rigid
matching and smoothing costs are often used [22]. Non-rigid
ICP methods [23] are widely used to match the input with a
template. However, it cannot track fast tissue deformation, and
also suffers from poor alignment in the tangential directions
on tissue surface [11]. Some works propose extracting feature
descriptors like SIFT [24], SURF [25], or ORB [11] and then
recovering the dense deformation field through interpolation.
However, these methods often generate deformations with poor
precision and low generalization, as they rely on sparse feature
points that are noisy due to poor texture and boundaries in
surgical videos. We propose to rely on dense correspondence
which can be more robust to noisy pixels.
Diffeomorphic mapping. A diffeomorphism refers to a glob-
ally one-to-one smooth and continuous mapping with invert-
ible derivatives. Diffeomorphic deformation guarantees the
topology is preserved after deformation and also enforces
consistency under compositions of the deformations. It has
been widely applied in tasks including data augmentation [26],
image registration [27], anatomical shape matching [28], and
mesh reconstruction [29]. Therefore, it is also a potentially
practical way to model soft-tissue deformation. In diffeomor-
phic deformation, the deformation field is parameterized by
an underlying stationary velocity field, and the deformation is
calculated by velocity integration, which can be approximated
by scaling and squaring [30]. In this paper, we propose to
use a diffeomorphic deformation to model the soft tissue
movement, so the recovered deformation can be smooth and
inherently satisfy several desired physical properties. This is
crucial for many downstream tasks such as manipulation and
biomechanical modeling.
Cycle consistency. Cycle consistency has been a classic
idea in tracking [31] and recently has been extended beyond
its original use as an evaluation metric [32] or uncertainty
measure [33] to become a learning objective for various
tasks such as registration [34], optical flow [35], image-
to-image translation [36], depth estimation [37], and video
segmentation [38]. One of its major forms, forward-backward
consistency, is commonly used for determining the occlusion
region during unsupervised optical flow estimation [35] and
self-supervised correspondence learning [39]. Wang et al. [39]
first employed cycle consistency across multiple steps in
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Fig. 2. The pipeline of our proposed soft tissue deformation recovery. Given two adjacent frames It and It+1, we first estimate their depth
Dt/Dt+1 and the tool masks Mt/Mt+1 so as to establish the semantic representation St and flow representation Vt. A deformation network
aggregates these representations together with temporal context and predicts a velocity field vt→t+1, which is later integrated into deformation
field ϕt→t+1. Cyclic consistency is utilized as self-supervision.

time and proposed a framework that can solve multiple tasks
including mask, texture, and pose propagation. Li et al. [38]
found cycle consistency can alleviate error propagation and
enhance temporal stability in video object segmentation. In
this paper, we adapt cycle consistency to our specific problem
setting. We incorporate both the entire forward-backward
circle consistency loss and skip cycle loss to calculate the
consistency at the intermediate level. We also calculate the
consistency from both a 2D perspective and a 3D perspective.

III. METHODS

A. Overview of self-supervised framework

This paper presents a self-supervised learning framework
to tackle the task of soft tissue deformation recovery (see
overview in Fig. 2). The input to the model consists of a
sequence of 2D image pairs with both left and right views,
It, · · · , It+k ∈ R2×H×W×3 revealing tissue movements. The
goal is to learn a series of physical-plausible deformation fields
ϕt→t+1, · · · , ϕt+k−1→t+k ∈ RH′×W ′×D′×3 that accurately
represent the actual deformation of the soft tissue in the 3D
mesh, where H×W is the size of 2D image and H ′×W ′×D′

is the size of the scene in world coordinates. Given two
adjacent frames, we first initialize their 3D representation and
estimate the pixel-correspondence flow between them, which
serves as the semantic and cross-frame flow representation. A
deformation network is used to aggregate the semantic and
flow representation and the long-range temporal information
extracted from the deformation field of previous frames. The
deformation network produces a stationary velocity field that
could be integrated into deformation fields, therefore guar-
anteeing the diffeomorphism. As a learning goal, the cycle-
consistency loss is calculated based on the similarity between
the warped pixels before and after an entire forward-backward
cycle, which forces the model to recover deformation fields
that are in agreement with the tissue movement depicted in

the image sequence throughout the cycle. Our framework is
designed to be applicable to various deformation patterns in
different procedures by fully exploiting both semantics and
pixel-wise flow information from the image. At inference time,
the deformation is predicted in a seamless and continuous
manner, thereby supporting real-time applications.

B. Temporally-consistent semantics and motions
The first step in soft tissue deformation recovery involves a

critical process of establishing the semantic representation of
the tissue and estimating its pixel-wise motion flow. Seman-
tics provides information in terms of where the deformation
appears and flow representation can inform the direction and
distance of the displacement. Combining both representations
helps to accurately determine displacement vectors and thereby
enhances the temporal-consistency of the recovered deforma-
tion. We expect the semantic and flow representation to well
reveal the 3D dynamic scene of the tissue so that recovered
deformation can be consistent with the tissue motion in real-
world space rather than 2D image space. However, the inputs
to our pipeline are all 2D images, where only 2D semantics
and pixel-wise flow on the plane can be directly obtained.
To this end, 3D reconstruction is needed to restore the 3D
semantic and flow representation before plugging into the
deformation network.

To reconstruct the 3D representation, depth estimation tech-
niques are needed to re-project the pixel value on the 2D
image back to the 3D space. Due to the lack of ground
truth in the surgical scenarios, we use a pre-trained STereo
TRansformer (STTR) [40] for the stereo depth estimation. It
uses a transformer to formulate the depth estimation problem
as a matching problem, which can generalize well to different
domains without fine-tuning. We experiment with the model
pre-trained on Scene Flow dataset [41] provided by the original
work, and find it works well on our dataset. However, directly
applying a dense depth estimation network can result in noisy
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estimation due to uneven illumination, ambiguous boundaries,
and motion blurs. Therefore, we propose a gradient-based
method to detect and remove the outliers. To be more specific,
for each pixel, we compare its depth value with its four
neighbors. If at least two neighbors have similar depth values
(defined to be the difference is less than 1 mm), then it is
assumed to be an inlier. Otherwise, this pixel is an outlier
and thereby should be removed. Note this may also remove
some points at the boundaries that are not necessarily outliers,
however, this will only affect a few pixels without influencing
too much in terms of global deformation estimation. We use
Dt to denote the estimated depth at frame t.

To avoid interruption by the intensive and rigid motion
of instruments, which may contaminate the semantic and
flow representation of the soft tissue and therefore degenerate
the temporal-consistency, we also pre-train an instruments
segmentation model to mask the instrument region (denoted
as Mt) and isolate instrument motion. Combining depth es-
timation and tool mask prediction enables us to faithfully
reconstruct the scene of soft tissue in the 3D world coordinate.

For flow representation, we first obtain the pixel-wise dense
flow from the 2D images and then re-project the 2D dis-
placement back to 3D space based on the estimated depth.
The motion flow is estimated through dense correspondence
learning techniques. The training of the flow network follows
a similar unsupervised schema as the UFlow [42]. Given input
images of two adjacent frames It and It+1 (both are left view),
the network predicts an optical flow map Vt ∈ RH×W×3

denoting the motion of each pixel from It to It+1. We denote
the reprojected 3D flow field to be Ṽt ∈ RH′×W ′×D′×3. The
unsupervised loss consists of an occlusion-aware photometric
consistency term Lphoto and an edge-aware smooth term
Lsmooth. The photometric consistency term is defined as

Lphoto(It, It+1, Vt) =
1

HW

∑
Ot ⊙M ⊙ ρ(It, w(It+1, Vt)),

where 1
HW

∑
is a shorthand notation for the mean over

all pixels. The function w(·, ·) inverse warps an image with
a flow field. The function ρ(·, ·) measures the photometric
difference between two images based on a soft Hamming
distance on the Census-transformed images and applies the
generalized Charbonnier function. The occlusion masks Ot ∈
{0, 1}H×W is estimated through a range-map-based occlusion
estimation [43] with gradient stops. M is the instrument
mask generated by the multiplication of masks of both frames
M = Mt ⊙ w(Mt+1, Vt), whose gradient is also stopped.
Lsmooth is selected to be first-order edge-aware smoothness,

Lsmooth(Vt, It) =
1

HW

∑
(exp(−λ

3

∑
c

∣∣∣∣∂Itc∂x

∣∣∣∣)⊙ ∣∣∣∣∂Vt

∂x

∣∣∣∣
+ exp(−λ

3

∑
c

∣∣∣∣∂Itc∂y

∣∣∣∣)⊙ ∣∣∣∣∂Vt

∂y

∣∣∣∣),
where λ is a hyper-parameter controlling the sensitivity to
visual edges and c denotes three color channels. and the overall
loss function for the optical flow estimation is a weighted
combination of photometric loss and smooth loss Lflow =
Lphoto+wsmoothLsmooth. For certain flow estimation methods
that contain intermediate predictions (e.g., RAFT [44]), we

apply the losses to both the final output and intermediate
predictions, with an exponentially decayed weight schema
Lflow =

∑n
i=1 γ

n−iLi
flow, where n is the number of flow

iterations, γ is the decay factor and Li
flow is the loss at

iteration i. In our experiments, we set n to be 12 and γ to
be 0.8. For the original UFlow, the intermediate predictions
have different scales from the final output. Therefore, we only
apply the loss to the final prediction, but the loss is multiplied
by 5 to balance with the subsequent loss terms.

For simplicity, we skip the Lself of the original UFlow. It
is designed to improve the performance on the margin of the
images, while we care more about the tool-tissue interaction
at the center of the images. Note that our framework is highly
adaptable, and designed to be used with a variety of networks
or methods for estimating depth or flow. We interpolate the
recovered semantics and flow into a grid volume with a pre-
defined size as the final representation, making it easier for
subsequent processing.

C. Physically-plausible diffeomorphic mapping

Re-projecting 2D motion flow directly onto a 3D space may
produce deformation fields that are not physically-plausible.
Firstly, unconstrained dense correspondence is semantic un-
aware and topology agnostic, which may result in rough and
intersecting correspondences. Moreover, 2D flow estimation
is depth-unaware. A reasonable correspondence on the 2D
plane may be unrealistic from a 3D perspective. Furthermore,
the estimated depth contains inherent noise due to multiple
factors such as ambiguous boundaries, uneven illumination,
and motion blur, which may cause the reconstructed pixel
to deviate far away from its actual location. This flow also
hardly satisfies long-term temporal-consistency, as it is esti-
mated based on two adjacent frames without incorporating
long-range temporal information, and can easily fail when
pixels are masked by instruments midway. As a result, a
separate deformation network is required to further aggregate
the semantics and flow representation, together with the long-
range temporal context, making it both temporal-consistent
and physical-plausible. As a solution to encourage plausible
deformation fields, we leverage diffeomorphism to model the
deformation. Diffeomorphism is an invertible mapping where
the forward and backward transformations are both smooth.
In this regard, the topology of the tissue can be preserved
after the deformation, which agrees better with the practical
deformation. Moreover, as the composition of multiple diffeo-
morphisms is also diffeomorphism, it is inherently proper to
model sequential deformations over time.

To this end, we rely on a new deformation network that
takes both semantic and flow representation as inputs and
produces the deformation field ϕt→t+1 ∈ RH′×W ′×D′×3. The
deformation field is parameterized with a stationary velocity
field vt→t+1 ∈ RH′×W ′×D′×3, which is the direct output of
the deformation network, so that the diffeomorphism can be
guaranteed. The path of the diffeomorphic deformation field ϕ
parameterized by s ∈ [0, 1] is generated by the velocity fields:

∂ϕ

∂s
= v(ϕ(s)) = v ◦ ϕ(s),
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Fig. 3. Cyclic-consistency enforces the points to re-arrive at their initial
position after an entire forward-backward cycle.

where v denotes the velocity field that remains the same
alongside s, ϕ(0) is the identity transformation, and ◦ is the
composition operator. The deformation at time s = 1 (i.e.,
ϕ(1)) is the final deformation field we need (i.e., ϕt→t+1). With
such parameterization, the deformation field is a member of a
Lie group and can force the mapping to be diffeomorphic and
invertible. The deformation field can be obtained through the
integration of the velocity field via the scaling and squaring
methods [30]. Moreover, to utilize the temporal context, we
concatenate the previous step’s velocity field to the feature
maps of the current frame’s decoder. Thereby, the prediction of
the current velocity field can take previous fields as references
and further promote temporal coherence and smoothness. To
facilitate the convergence of the deformation network, we
design a consistency loss Lcons to distillate the displacement
from the flow representation to the deformation field, which
is defined as the l1-norm distance between the flow repre-
sentation and the deformation field. As shown in Fig. 2, we
stop the gradient of the consistency loss with respect to flow
representation. This is because the flow network is pre-trained,
while the deformation network is initialized with an identity
transformation. By stopping this gradient, we can prevent the
pre-trained flow network from collapsing, resulting in a more
stable training process. We also encourage a smooth velocity
field with a diffusion regularizer on the spatial gradients of
velocity Lspatial:

Lspatial =
1

H ′W ′D′

∑
(

∥∥∥∥∂v∂x
∥∥∥∥2 + ∥∥∥∥∂v∂y

∥∥∥∥2 + ∥∥∥∥∂v∂z
∥∥∥∥2),

where 1
H′W ′D′ is a normalization factor for the mean over all

grids, which helps to avoid a discontinuous velocity field.

D. Cycle-consistency leaning objectives
To complete the self-supervised workflow, we rely on cycle-

consistency as our learning objective. Consider as inputs a
sequence of video frames, the estimated deformation fields
can gradually warp the images and generate a deformed
image. Note the deformation happens in the 3D space and
the deformed image is the projection in the 2D image space.
We expect the image to re-arrive to its original state after an
entire forward-backward circle, and we also enforce the image
to be similar to the true frames along the path, as depicted in
Fig. 3. The former enables the learning objective to be robust
to discontinuous semantics caused by partial observable scenes
midway, while the latter guarantees the recovered deformation

is temporal-consistent all the way along the path. Combining
both terms contributes to a stronger learning signal that can
prevent the learning process from taking shortcuts [45].

Through accumulating the step-wise deformation, we can
derive the total forward deformation, ϕt→t+i = ϕt→t+1 ◦
· · · ◦ ϕt+i−1→t+i and the total backward deformation in a
similar way. The cycle loss of i steps Li

cycle is defined as
the l1-norm distance between the original pixel coordinates
and the deformed pixel coordinates after the entire forward-
backward circle, both in the world coordinates. The skip cycle
loss Li

left and Li
right computes the photometric similarity

between warped 2D views at the end of the forward path
and their corresponding true image views. For the left view,
the photometric loss is based on a soft Hamming distance on
the Census-transformed images that applies the generalized
Charbonnier function [46]. For the right view, we minimize
the angle between RGB vectors:

Li
right =

1

HW

∑
M ⊙ cos−1

(
Irt+i · w(Irt , ϕt→t+i)

∥Irt+i∥∥w(Irt , ϕt→t+i)∥

)
,

where 1
HW

∑
is shorting for the mean over all pixels, M is the

inverse tool masks, w(Irt , ϕ
t→t+i) is the warped image. Here

cos−1, ·, and ∥ · ∥ are all calculated per pixel. The reason for
the difference is that census transformation relies on relative
intensity, but the light source of the surgical scene makes the
brightness inconsistent for different views. By incorporating
photometric loss of both views, we ensure the recovered
deformation is temporal-consistent in a 3D perspective. During
each training iteration, we take k + 1 frames as inputs. The
overall cycle-consistency loss sums over the k possible cycles:

Lcycle =

k∑
i=1

Li
cycle + wleftLi

left + wrightLi
right.

The overall loss is a weighted combination:

L = Lflow + wconsLcons + wspatialLspatial + wcycleLcycle.

In this regard, we can train the flow network and deforma-
tion network simultaneously, so as to achieve both temporal-
consistency and physical-plausibility.

E. Implementation details
The segmentation network is based on the Swin Trans-

former [47], which contains a Swin transformer backbone, a
upernet decoder, and an auxiliary FCN decoder. We collected
the clinical trial data from the same source for training
deformation recovery, to form our training dataset. Sequences
in which significant instrument interactions were observed
from independent videos are selected. The data are labeled
by a trainee with a three-year related experience and verified
by a team of engineering students, where the instruments
are labeled as foreground. We labeled only the left frames
to reduce the workload. The annotations are performed with
”LabelMe” [48] toolbox. The implementation of networks is
based on mmSegmentation [49]. The input images are cropped
to 1024 × 1024 and recovered to the original size after
the network. Data augmentation is adopted to improve the
robustness of the algorithm with horizontal and vertical flips,
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TABLE I
QUANTITATIVE EVALUATION OF OUR METHOD COMPARED WITH EXISTING METHODS. WE TRAIN THE MODEL WITH ALL TRAINING DATA AND REPORT

THE SOFT TISSUE MANIPULATION-LEVEL METRIC ON THE TEST SET. THE BEST NUMBER FOR EACH CATEGORY IS HIGHLIGHTED IN BOLD.

Models %|Jϕ| ≤ 0 ↓ l1-norm ↓ PSNR ↑ SSIM (%) ↑

push dissect retract total push dissect retract total push dissect retract total push dissect retract total

NICP 3.53 6.58 3.87 4.65 22.78 24.04 26.34 24.46 17.85 17.92 16.90 17.53 64.92 63.92 58.34 62.25
CPD 8.14 7.21 7.44 7.56 22.31 21.74 24.21 22.82 17.84 18.42 17.54 17.89 61.21 63.88 58.46 60.90

SIFT 0.15 0.14 0.41 0.24 21.03 20.85 25.31 22.53 18.78 18.92 17.65 18.41 76.46 76.64 71.47 74.73
Harris–Laplace 0.15 0.14 0.41 0.26 21.02 20.94 25.23 22.56 18.79 18.87 17.67 18.40 76.46 76.59 71.58 74.64

RAFT 3.64 3.86 3.37 3.61 13.04 12.00 13.61 12.89 21.92 23.08 21.60 22.19 84.29 85.59 82.19 83.97
UFlow 3.63 3.83 3.35 3.59 12.98 12.03 13.69 12.92 21.97 23.04 21.57 22.18 84.52 85.82 82.23 84.13

Ours (+RAFT) 0.01 0.01 0.03 0.02 13.03 11.94 13.43 12.80 22.02 23.09 21.73 22.27 84.61 85.97 82.82 84.42
Ours (+UFlow) 0.01 0.01 0.03 0.02 12.86 12.00 13.56 12.83 22.11 23.12 21.67 22.28 84.70 86.03 82.69 84.43

image shifts, and rotations [50]. The segmentation network
is initialized with a pre-trained model on [49]. Binary Cross-
Entropy loss is adopted to optimize both the decoder branch
and the auxiliary FCN branch, which sets the instrument
regions as foreground and the tissues as background. The
loss ratio of the auxiliary branch is set as 0.4. We used the
Adam optimizer with a learning rate of 1e-6 and the StepLR
scheduler with a decay rate of 0.1 for every 10 epochs. The
maximum epoch is set to be 30.

For the flow network, we use RAFT [44] and UFlow [42],
with both pre-trained on FlyingThings3D [41]. The deforma-
tion network structure is borrowed from VoxelMorph-dif [51],
whose encoder is duplicated doubly to adapt to the multi-
modal setting, and skip connections across encoders are used
for cross-modality fusion. The velocity field is also concate-
nated to the last layer of the decoder. The original size of the
rectified stereo image is 740× 540, which is then cropped to
512 × 512 before plugging into the flow network. The size
of the input to the deformation network is 64 × 64 × 64,
where each pixel equals 1 mm. Both flow and deformation
networks are trained by the Adam optimizer with an initial
learning rate of 2e−4 which linearly decays to 1e−5 in 20
epochs. The coefficients of each loss term are as follows in
our experiments: wleft = wright = wcons = 1.0, wspatial =
wcycle = 0.1. All three models are implemented with PyTorch
1.12.1 using one Nvidia GeForce RTX 3090.

IV. EXPERIMENTAL RESULTS

A. Dataset and evaluation metrics

To evaluate the efficacy of our method, we collect an in-
house dataset to evaluate the model performance. The dataset
is collected during the clinical trials conducted by expert
surgeons using a private surgical robot system. Ethics ap-
proval of the study protocol performed at Multi-Scale Medical
Robotics Center (MRC) has been granted by IACUC of
the Hong Kong Science and Technology Parks Corporation
(HKSTP) with a reference number (HKSTP IACUC ref. no.:
2021-010). There are two types of surgical procedures in
the dataset, Right Hemi-colectomy (RHC) [52] and Total
Mesorectal Excision (TME) [53]. Distinct from existing public

surgical datasets which only contain monocular videos [54]–
[56] or only provide video images at low frame rate (1 or 2
Hz) [57]–[59], we recorded synchronized stereo videos at 25
fps and calibrate the stereo camera parameters for precise and
fine-grained deformation recovery. Specifically, we sort out
three common surgical actions involving typical and obvious
tissue deformations from the video frames for evaluation: (1)
Pushing [59], [60]: push and then manipulate parts of the
tissues to provide a better operational space for other surgical
action; (2) Dissection (blunt) [61], [62]: separate tissues along
tissue planes using blunt parts of the instruments to avoid
harming sensitive tissue structure; (3) Retraction [63], [64]:
grasp and then lift up parts of the tissues to expose the area
of interest (e.g., tumor and vessel). The dataset consists of
180 sequences of stereo video frames, equally distributed for
each surgical action and procedure. The average length for
all sequences is around 26 frames (1 second), ranging from
13 frames to 47 frames (lasting for 0.52-1.88 seconds), which
is the exact time that is needed to complete one movement
of the surgical action. The dataset was randomly split into a
70% training set, a 10% validation set, and a 20% testing set,
maintaining the proportional distribution of surgical actions
and procedure types in each dataset.

Validating in vivo results is challenging without ground
truth. As commonly adopted by the community, performance
can be evaluated by comparing the photometric similarity
between original and deformed images. The reference frame is
used to reconstruct a point cloud and its points are deformed
based on recovered temporal deformation. The deformed point
cloud is projected onto the 2D image plane and similarity with
the original image is measured using l1-norm, peak signal-
to-noise ratio (PSNR), and structural similarity index (SSIM).
These metrics can reflect whether the recovered deformation is
temporal-consistent. The percentage of positive determinants
for the Jacobian matrix is reported to reflect whether the
deformation is topology-preserving and physical-plausible.

B. Experimental setting

We compare our results with three types of deformation
estimation methods that can be adapted to address our task:
(1) Point Cloud Based. We apply NICP [65] and Coherent
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Fig. 4. Qualitative comparison of the deformation recovery results with state-of-the-art methods. Our methods can accurately reflect the movement
of the soft tissue, and the region with the right arrow shows our recovered deformation is smoother and more realistic than dense flow based
methods. (Blank regions correspond to regions sheltered by the instruments during the first frame, regions with noisy depth estimation, or margins
where sudden depth change happens.)

Point Drift (CPD) [66] as comparison methods based on
point cloud registration. The deformation is optimized to
align the reconstructed point cloud of two adjacent frames;
(2) Sparse Feature Based. Following [10], we use Harris-
Laplace [10] and SIFT [24] as sparse feature descriptors and
then apply feature points match and thin-plate interpolation
to recover the deformation field; (3) Dense Flow Based. We
also compare our method with several dense corresponding
learning techniques including UFlow [42] and RAFT [44],

[67]. Both models are pre-trained on FlyingThings3D and fine-
tuned on our data using the scheme mentioned in Sec. III-B.

We test generalization and conduct ablation studies to verify
components in our pipeline. We train and test our model
on different actions/procedures and compare results. Ablation
studies include training a deformation network with flow
representation only, removing temporal aggregation, removing
Lcons, removing the cycle loss while only keeping the skip
cycle loss, and comparing separate/joint training of flow and
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Fig. 5. Visualization of deformation field on 2D plane. We draw 2D
grids, unproject to 3D space to move with the deformation field, and
finally project to the 2D plane.

deformation networks.

C. Comparison with state-of-the-art methods
From Table I, we can see our method outperforms all other

methods, with both overall and action-level performance. We
also visualize the deformation by constructing surface mesh
based on the reconstructed point cloud of the first frame and
visualize its dynamic morphology changes (Fig. 4). Besides,
we draw a 2D visualization of the deformation fields for
a few cases for a clearer illustration (Fig. 5). In terms of
temporal-consistency, our method is much better than point
cloud based deformation strategy and sparse feature matching
methods, with the overall performance uplift of more than
43.19%, 21.02%, and 12.98% for l1-norm, PSNR, and SSIM
respectively. The reason is that the point cloud based de-
formation is semantic unaware. The sparse feature matching
may easily fail because there are only a few feature points
due to homogeneous textures. And many feature points are
located at the margin, where depth estimation is inaccurate.
Moreover, both methods suffer from huge performance drops
with partial observable scenes masked by instruments. While
our method fully utilizes the semantic information and is more
robust to occlusions through the cyclic mechanism. Compared
with dense correspondence-based methods, our method only
has marginal gains in terms of temporal-consistency metrics.
The performance uplift is 0.70%, 0.41%, and 0.43%. However,
from the qualitative visualization, the mesh deformed by dense
flow will gradually become rough, especially for regions with
large displacement, while meshes generated by our method
continue exhibiting high quality over time. This is because the
dense flow based methods seek pixel correspondence purely
on two adjacent frames while our method takes long-range
temporal dependencies into consideration, making it perform
better in the long run.

We also find our method can greatly enhance the physical-
plausibility of the deformation, whose percentage of non-
positive determinants of the deformation Jacobian matrix is
less than 0.02%, while that of dense flow based methods can
be greater than 3.59%. We further compare the deformation re-
covered by our method and pure dense flow by drawing the lo-

Fig. 6. Directly re-projecting the dense matching results in rough defor-
mation fields and may cause topology changes with large displacement.
Diffeomorphic mapping is topology-preserving and spatially smooth.

TABLE II
GENERALIZABILITY ACROSS VARIOUS MANIPULATIONS. WE TRAIN THE

MODEL ON ONE MANIPULATION AND TEST IT ON THE OTHER.

Data |Jϕ| ↓ l1↓ PSNR↑ SSIM ↑

Pushing→Pushing 0.01 13.23 21.91 84.48
Dissection→Pushing 0.01 13.42 21.78 84.10
Retraction→Pushing 0.02 13.45 21.89 84.34

Pushing→Dissection 0.01 12.42 22.87 85.06
Dissection→Dissection 0.02 12.17 23.00 85.80
Retraction→Dissection 0.02 12.64 22.76 85.25

Pushing→Retraction 0.01 13.98 21.52 81.79
Dissection→Retraction 0.02 14.16 21.37 81.55
Retraction→Retraction 0.01 14.08 21.50 81.93

cal pattern of the deformed triangle mesh (Fig.6). Our method
guarantees spatial smoothness and topology-preserving, with
the triangles in the deformed triangle mesh perfectly aligned
with their neighborhoods. While purely applying optical flow
can result in topology changes, represented by zig-zag patterns
and the intersection of adjacent triangles.

Our pipeline (without depth estimation and instrument
segmentation) achieves an inference speed of 20 fps. With
many lightweight depth estimations and instrument segmenta-
tion candidates running in parallel with flow estimation, our
method has the potential to support real-time application.

D. Analytical results for our approach

1) Generalizability: Our method can achieve good gen-
eralization under action shift (Table II) or procedure shift
(Table III). The physical-plausibility is well-maintained as
expected because distribution shift has no influence on dif-
feomorphic mapping. In terms of temporal-consistency, there
is almost no performance drop when adapting a pre-trained
model to another dataset with different actions, and the
performance drop across procedures is less than 0.90% in
terms of SSIM. The reason for the robustness is that our
model can make the utmost use of the semantic information
and pixel-level flow information, both of which are action-
agnostic. Although procedure shift may result in a certain gap
in terms of pixel values, the performance drop is still within a
reasonable range. Therefore, our method has the potential to
help robotic surgeries under variable environments.
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TABLE III
GENERALIZABILITY ACROSS DIFFERENT PROCEDURES. WE TRAIN THE

MODEL ON ONE PROCEDURE AND TEST IT ON THE OTHER.

Data |Jϕ|↓ l1 ↓ PSNR↑ SSIM↑

TME →TME 0.02 12.52 22.73 85.75
RHC →TME 0.02 12.49 22.65 85.40

TME →RHC 0.01 14.06 21.47 81.84
RHC →RHC 0.01 13.61 21.66 82.62

TABLE IV
MODEL PERFORMANCE ON LONG VIDEO CLIPS (5S), WITH A

COMPARISON OF DENSE FLOW-BASED BASELINE.

Methods |Jϕ| ↓ l1↓ PSNR↑ SSIM↑

RAFT 3.32 19.11 18.98 76.50
Ours (+RAFT) 0.01 17.45 19.84 78.35

2) Long video robustness: We conducted additional exper-
iments on longer video clips to assess the performance of
our methods in recovering deformations over a longer time
horizon. Longer clips typically involve camera movements,
movements of surgical tools, and the appearance or disappear-
ance of new tissues that cannot be accurately modeled through
deformation. To address this, we carefully selected clips from
the testing phase videos that better reflect tissue deformation,
resulting in 15 video clips, each approximately 5 seconds long.
However, each clip still contains multiple different actions
and may include snippets that cannot be modeled through
deformation, particularly movements of vacant surgical tools.
We evaluated the performance of our model on these longer
snippets and compared it with dense flow-based methods,
using RAFT as the flow estimation network for both methods.
The results, shown in Table IV, indicate that although both
methods experience a drop in performance as the clips become
longer due to the complexity of the scene dynamics, our
method outperforms the dense-correspondence-based method.
This is because our method incorporates temporal information
during modeling and employs a cyclic mechanism, which
enhances the robustness of deformation estimation to temporal
evolution. Additionally, the use of diffeomorphism modeling
ensures that the reconstructed deformation fields are physi-
cally plausible, preventing excessively large deformations or
discontinuous flickers at intermediate time frames and making
our method more robust in the long run.

3) Ablation study: Our ablation study results in Table V
reveal the importance of several of our components from the
pipeline. Specifically, we perform both removal and incremen-
tal analysis. For removal analysis, we remove each component
from the full model separately and compare their performance
with the full model, while for incremental analysis, we fix
a base model that only plugs the motion representation to
the deformation network and a single-step photometric loss is
used to train the deformation network. We then add different
components to the base model to observe their benefits. All
major elements of the deformation network, namely semantic

representation, inter-frame flow information, and long-range
temporal context, contribute to better model performance,
which shows our deformation network can truly integrate
information from all sources. This observation is especially
true in the incremental experiments, which show improve-
ments of 0.61%, 1.77%, and 1.45% in terms of SSIM when
adding these three representations to the base model separately.
The cyclic mechanism is an indispensable component of our
model training, which can significantly improve the model
performance. Moreover, we find that jointly training the flow
network and the deformation network can also bring out
performance gains compared with separate training.

V. DISCUSSION

Our pipeline relies on multiple pre-trained models (i.e.,
depth estimation, mask generation, and flow estimation) to ob-
tain the semantic and motion representations. Their accuracies
can somehow affect the results of our pipeline. In this section,
we briefly analyze how their error will influence the results of
our pipeline and how we can mitigate the negative influence.

1) Depth estimation: Accurate depth estimation is essential
for determining tissue position in our framework. However,
if the depth contains significant errors, the transformed world
coordinates may not accurately represent the tissue’s actual
position, rendering the recovered deformation meaningless for
downstream tasks. To ensure the reliability of depth estimation,
we employ multiple mechanisms. Firstly, existing methods
like STTR have demonstrated excellent generalization to sur-
gical scenes and have been widely used in previous works.
Secondly, we verify the accuracy of depth estimation by
comparing the original image with its reprojected version,
which involves unprojecting the image to 3D space based on
the estimated depth and then rendering it back to 2D space.
This independent examination has shown high consistency
in our case. Thirdly, we employ self-supervised fine-tuning
techniques to improve depth estimation accuracy for specific
datasets. Additionally, we address potential inaccuracies at
object boundaries by using a gradient-based method to remove
noisy points and minimize their impact on the 3D represen-
tation. Empirically, we have observed that this scheme only
removes a small proportion of points, which has minimal effect
on the final performance. Moreover, for most deformation
estimation tasks, the accuracy of boundary deformation is less
critical compared to that of object centers. Therefore, errors
resulting from inaccurate depth estimation remain within an
acceptable range.

2) Tool mask generation: Accurately estimating deformation
in soft tissue requires accounting for tool movement, which
typically undergoes rigid displacement compared to the soft
tissue. If the tools are not properly masked, their movement
will be incorporated into the estimated deformation, com-
promising accuracy. Fortunately, tool segmentation is a well-
established task with high performance. The model is less
affected by false positives (tools not fully masked) compared
to false negatives (tissue mistakenly masked). In the case of
false positives, where some parts of the tools are not masked,
their remaining movement can still impact deformation es-
timation. However, false negatives can be compensated for
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TABLE V
ABLATION STUDIES ON INPUTS OF THE DEFORMATION NETWORK, LOSS TERMS, AND TRAINING SCHEMA.

Methods |Jϕ|↓ l1↓ PSNR↑ SSIM ↑ Methods |Jϕ|↓ l1↓ PSNR↑ SSIM ↑

Full model 0.02 12.80 22.27 84.42 Base Model 0.01 14.59 21.54 81.87

W/o semantics 0.02 13.07 22.18 84.23 W/ semantics 0.01 14.57 21.54 82.37
W/o temporal dependency 0.03 13.10 22.18 83.76 W/ temporal dependency 0.01 13.55 21.87 83.06

W/o distillation 0.01 13.48 21.98 83.69 W/ distillation 0.01 13.49 21.99 83.32
W/o cycle consistency 0.02 13.38 21.99 83.55 W/ cycle consistency 0.01 13.75 21.88 82.96

W/o joint training 0.01 13.02 22.20 84.20 W/ joint training 0.01 13.83 21.84 82.85

by employing smooth regularization and ensuring temporal
consistency. To minimize the influence of tool movement on
deformation estimation, we expand the predicted segmentation
masks by 20 pixels to thoroughly mask the tools.

3) Flow estimation: Pre-trained flow estimation usually per-
forms poorly on surgical videos due to the homogeneous
textures of the tissues. As a result, this module is trainable in
our framework through photometric consistency. Moreover, we
refine the initial flow estimation with diffeomorphic constraints
and cyclic-consistency. Even if the initial estimation of the
flow field is inaccurate, the final deformation field will still
accurately reflect the deformation of the soft tissue.

VI. CONCLUSION

This work shows a novel self-supervised learning frame-
work that can recover soft tissue deformation in high qual-
ity from stereo surgical videos. Our method extracts visual
features to yield the 3D deformation field with both temporal-
consistency and physical-plausibility. Experiments present that
our model can achieve state-of-the-art performance and can
generalize well to different tissue manipulation and procedure
types. We hope that this work serves as the first step forward
to reliable data-driven solutions for visual-based deformation
modeling for soft tissues, which holds enormous potential for
robotic surgery applications.

There are still several limitations of our work. First, our
model can hardly handle extremely large deformation with
the appearance of a large amount of new tissue. Second, a
good-quality depth estimation can be the bottleneck of our
model performance. Third, the pipeline of our training network
entails the explicit usage of the camera parameters, affecting
its generalizability to videos caught by different cameras.

As for the evaluation scheme, the current approach is still
not perfect as it is based on the photometric similarity between
the deformed image sequence and the true image sequence,
which can only be regarded as a heuristic evaluation. A
more scientific evaluation scheme would require 3D ground
truth labels which is extremely difficult to retrieve due to the
constraint of the surgical setting. But as we continue promoting
this research, it can be overcome, potentially by incorporating
simulators or animal trials.

For future work, we will try to overcome these limitations,
In addition, based on the recovered deformation, we will estab-
lish a mapping from robot kinematics to the tissue deformation

which can further be incorporated into a planning and control
pipeline to achieve automated soft-tissue manipulation.
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