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Abstract

Objective. Segmentation, the partitioning of patient imaging

into multiple, labeled segments, has several potential clinical

benefits but when performed manually is tedious and

resource intensive. Automated deep learning (DL)-based

segmentation methods can streamline the process. The

objective of this study was to evaluate a label-efficient DL

pipeline that requires only a small number of annotated scans

for semantic segmentation of sinonasal structures in CT

scans.

Study Design. Retrospective cohort study.

Setting. Academic institution.

Methods. Forty CT scans were used in this study including

16 scans in which the nasal septum (NS), inferior

turbinate (IT), maxillary sinus (MS), and optic nerve

(ON) were manually annotated using an open-source

software. A label-efficient DL framework was used to

train jointly on a few manually labeled scans and the

remaining unlabeled scans. Quantitative analysis was then

performed to obtain the number of annotated scans

needed to achieve submillimeter average surface dis-

tances (ASDs).

Results. Our findings reveal that merely four labeled scans are

necessary to achieve median submillimeter ASDs for large

sinonasal structures—NS (0.96 mm), IT (0.74 mm), and MS

(0.43 mm), whereas eight scans are required for smaller

structures—ON (0.80 mm).

Conclusion. We have evaluated a label-efficient pipeline for

segmentation of sinonasal structures. Empirical results

demonstrate that automated DL methods can achieve

submillimeter accuracy using a small number of labeled CT

scans. Our pipeline has the potential to improve pre-

operative planning workflows, robotic- and image-guidance

navigation systems, computer-assisted diagnosis, and the

construction of statistical shape models to quantify popula-

tion variations.

Level of Evidence. N/A
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Functional endoscopic sinus surgery (FESS) is an
effective, minimally invasive procedure for the
treatment of chronic inflammatory conditions of

the paranasal sinuses that offers minimal pain and no
outward scarring of the nose. Despite FESS being
performed over 250,000 times annually in the United
States, it remains a challenging procedure owing to narrow
operative corridors and the proximity of critical anatomical
structures.1 Although both surgeon experience and
advances in imaging have contributed to decreased rates
of FESS complications, the reported rates of major
complications range between 0.31% and 0.47% while
minor complications are reported at rates between 1.37%
and 5.6%.2

The use of intraoperative navigation in sinonasal
surgery registered to a patient's preoperative imaging
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can decrease operative times and improve outcomes.3

Intraoperative navigation is especially helpful in patients
with distorted anatomy or a burden of disease that cannot
be appreciated on endoscopic visual inspection alone.
However, current navigation systems suffer from tracking
errors greater than 1 mm, which, when considering the
relative size of sinonasal structures, is a significant
limitation.4‐6 Errors of this magnitude also limit the use
of preoperative labeling of anatomical structures on
patient imaging, a process referred to as segmentation.
With a robust system for segmentation, the surgical team
would be assisted in augmenting the preoperative plan-
ning workflow or in developing patient‐specific anato-
mical models for image‐ or robot‐guided navigation
systems.

Currently, manual segmentation of anatomical struc-
tures in volumetric imaging is often required for such
systems, meaning that radiologists or other qualified
personnel must invest hours of time in labeling structures.
To reduce the burden of manual labeling, semi‐ or fully
automated segmentation methods have been proposed.7

Semi‐automated labeling has been a feature of atlas‐based
labeling methods,8 the traditional technique used for
segmentation tasks.7,9 Atlas‐based methods rely on creating
an atlas or a reference volume, which is generated from the
segmentation of a single image or the average of multiple
images. This presegmented atlas is then coregistered with a
patient CT to automatically segment the patient's anatomy.
For instance, Konuthula et al9 proposed a semi‐automated
atlas‐based method for segmenting skull base structures.
The technique utilizes rigid landmark registration followed
by a deformable registration algorithm10 to achieve semi‐
automated segmentation. Major limitations of such atlas‐
based segmentation methods include extended execution
times, challenges in accommodating patient anatomy
variation, and the requirement of large, annotated datasets
to generate accurate atlases.7,11 Recently, deep learning
(DL) based methods, such as U‐Net,12 have demonstrated
impressive performance on various medical image segmen-
tation tasks.13,14 In contrast to atlas‐based approaches, DL‐
based auto‐segmentation requires considerably less time for
on‐line applications.7,8 However, DL performance relies on
large, annotated scan databases. DL method performance
declines significantly when ground‐truth segments are
limited, which is often the case in a healthcare context
since manual annotation is a severely time‐consuming
process for radiologists.

To overcome these obstacles, our group has developed
label‐efficient segmentation models to decrease depen-
dence on manual labeling for establishing ground‐truths.
The present study proposes an annotation‐efficient
segmentation pipeline that involves training a DL method
with a small subset of manually labeled data along with a
pool of unlabeled data (a technique referred to as semi‐
supervised learning) to generate accurate and efficient
segmentation masks of the critical sinonasal structures on
CT. Motivated by the 1 mm navigation error tolerance for

intraoperative image guidance in sinus surgery,5,6 we
analyzed the number of labeled scans needed to reach
submillimeter labeling accuracy.

Materials and Methods

Ethics
This study was approved by the Johns Hopkins School
of Medicine Institutional Review Board. To prepare the
dataset for deep neural network training, we obtained
high‐resolution CT scans from the database of a tertiary
referral Otolaryngology center for adult patients
(>18 years of age). Prior to manual annotation of
anatomical structures, all CT images were deidentified
by excluding the soft tissue structures of the face.

Dataset Creation and Manual Segmentation
The resolution and dimension of each scan is 0.46 mm per
voxel length and 512 × 512 ×N respectively, where N
represents the number of slices in the axial direction of CT
image. Our project sought to identify nonpathological
sinonasal anatomic structures and therefore, patients with
identified sinonasal pathologies (eg, polyp, tumor, or
prior trauma) were not included in the dataset. In total,
40 scans satisfied our inclusion criteria, of which 16 scans
were labeled manually via an open‐source medical
imaging software, 3D Slicer.15 The anatomical structures
(eg, nasal septum [NS], inferior turbinate [IT], maxillary
sinus [MS], and optic nerve [ON]) (Figure 1) were
annotated by both a senior Otolaryngology–Head and
Neck Surgery resident and a medical trainee with prior
knowledge of sinonasal anatomy. Final annotations were
verified by the senior author (rhinology and skull base
surgeon). It is worth noting that the dataset for model
training was comprised of a small number of manually
annotated CT scans combined with unlabeled CT scans,
while the remaining labeled CT scans served as a
validation set for the evaluation process.

Dataset Processing
To facilitate effective joint training of the DL model with
both labeled and unlabeled scans, the anonymized scans
were rigidly co‐registered using an open‐source deformable
image registration software, Advanced Normalization
Tools (ANTs16), to standardize geometry, dimensions,
and coordinate spaces. Prior to training, a region of
interest (224 × 224 × 224) was cropped from each scan
based on the template scan range used for ANTs.

DL Framework
Our framework is built on the DL method, DeepAtlas17

which enables label‐efficient learning by jointly training two
DL models—the segmentation model and the registration
model. There are two key features of this method: its ability
to learn from only a few manual segmentations and its use
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of unlabeled data for mutual guidance of the registration or
segmentation model, respectively.

Prior to model training, users can specify the number
of segmentations to use. The training process follows an

iterative approach (see Figure 2) where the DL models
learn from a pair of images, denoted as fixed and moving
images, along with their segmentation labels when
available. The registration model takes these image pairs

Figure 1. Visual comparison between a sample ground-truth segmentation (left) and heatmap visualization of predicted segmentations

(right) across datasets. The range of distance errors lies between 0 mm (blue) and 5 mm (red).

Figure 2. Overview of our automated segmentation pipeline including network training (top), network inference (middle), and postprocessing

(bottom). In the training phase (top), the two DL models iteratively learn from a pair of randomly selected scans. During inference for the

registration network (middle), the labels associated with a moving image are spatially transformed to the target image using the learned

transformation. This technique is commonly known as label propagation from the moving image to the target image. (bottom) To remove false

positive generated by our deep learning models, we employ a post-processing step to identify and subsequently remove the small island regions.
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and generates a deformation field, which spatially trans-
forms each voxel of the moving image to align with the
fixed image. Subsequently, this deformation field is
applied to both the moving image and its corresponding
segmentation to produce deformed scans and segmenta-
tions for the fixed image. To facilitate effective training,
we employ two types of losses: one measures the similarity
between the fixed and deformed scans, while the other
assesses the consistency between the estimated and
ground truth segmentations. Additionally, a regulariza-
tion loss, dependent on the deformation field, promotes
smooth network training. Concurrently, the individual
paired images are fed into the segmentation model, which
estimates a segmentation map for each image. If sufficient
ground truth data is available, we compute a segmenta-
tion similarity loss for each input scan; otherwise, this
step is omitted. Subsequently, the losses for both net-
works are combined and minimized iteratively until no
further decrease in loss is observed.

Overall, this iterative approach enables the segmenta-
tion model to generate a voxel‐based probability map from
a few labeled scans, while the registration model learns a
deformation field needed to register a pair of image scans.
Thus, the joint approach combines the strengths of both
the atlas‐based registration method and DL‐based seg-
mentation model in a unified manner, where both models
mutually guide each other's training in a label‐efficient
manner. Both the registration and the segmentation model
were implemented using a 3‐dimensional (3D) U‐Net
architecture.18 At the end of the training, the registration
and segmentation models can independently make predic-
tions on test scans.

Postprocessing
The predictions of the trained DL models often generate
false positives in the form of small islands around
expected anatomical structures. To remove these false
positives, we use the 3D connected component algorithm
(CC3D).19 Connected components groups segmented
voxels of anatomical structures into spatial regions based
on voxel connectivity. After identifying these spatial
regions, we then refine the algorithm's segmentation by
automatically removing smaller regions (Figure 2).

Segmentation Evaluation Metrics
To evaluate performance of our DL framework, the
predictions from the registration and segmentation
models were evaluated against manually annotated
segmentation of anatomical structures (referred to as
ground‐truth) in a 5‐fold cross‐validation strategy. The
Dice Similarity Coefficient (DSC)20 scores were calculated
to measure the degree of overlap between predictions and
the ground truth, where a 0 DSC corresponds to no
overlap and 1 DSC indicates perfect overlap. While DSC
is a standard segmentation metric for medical image
segmentations,21 its functional application to surgery can

often be limited for task‐specific requirements, where
measuring distance to a structure is more relevant.
Therefore, to place more emphasis on structure bound-
aries while still understanding prediction misalignment
relative to the ground‐truth, manual segmentations we
also evaluated our DL framework with a surface
boundary‐based metric, Surface distance.

Average surface distance (ASD)21 measures the shape‐
wise spatial error (in millimeters) between predictions and
ground‐truth segmentation. For computation of ASD, the
paired predicted segmentation and ground‐truth segmenta-
tion were first converted to 3D point clouds. Then, the closest
distance for each point in the predicted and the ground truth
segmentation was calculated. Finally, the average of these
bidirectional distances from each point is used as a
quantitative measure. For qualitative spatial visualization,
the individual error of each point to the ground truth was
assigned to the prediction segmentation mesh, resulting in the
heat map that denotes the location of largest error
(see Figure 3). To obtain a comprehensive assessment across
all ground‐truth annotations, we utilized mean (standard
deviation) as well as median (interquartile range) to depict
the typical accuracy of the model in the presence of extreme
cases (ie, best and worst‐performing scans).

DL Runtime Analysis
The total time span of automated segmentation pipeline
was recorded, including critical steps of the DL frame-
work and key components of the workflow. Differences
between time stamps were calculated to determine the
runtime of each corresponding step. The data preproces-
sing and training were performed on the AMD Ryzen
Threadripper 3970 × 32‐Core CPU and Nvidia RTX3090
GPU. The average execution time of image preprocessing
is about 25 minutes and DL training is about 2 hours with
250 epochs for each fold. Notably, the training time
remained consistent irrespective of the number of scans or
labels used. Additionally, the model's inference time per
scan was found to be under 5 seconds.

Results
The DL framework was validated across varying numbers
of labeled scans and two distinct task settings: training on
large anatomical structures (including NS, IT, and MS)
and training on all anatomical structures (NS, IT, MS,
and ON). These experiments shed light on the influence of
labeled scans and the inclusion of smaller structures on
the DL framework's performance.

Quantitative Analysis
The performance of the DL framework across large
structures that utilized a varying number of labeled scans
is listed in Tables 1 and 2. Empirical results demonstrate
that the model can generate sub‐mm ASDs with only four
labeled scans. The performance of both the segmentation
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and the registration model is comparable, thereby
indicating that both models were able to mutually guide
each other during training to reach an optimal state for
both models. Additionally, the performance of the model
increases as the number of training labels increases. It is
important to note that the performance trend is consistent
across all the sinonasal structures, highlighting the
generalizability of the two models.

Tables 3 and 4 present the performance of the DL
framework across all structures. The results indicate that the
proposed method can effectively generalize for both larger

and smaller, critical structures essential for surgical sce-
narios. Additionally, the inclusion of additional structures,
such as the optical nerve (ON), minimally affects the
prediction accuracy for other structures, suggesting scal-
ability of the approach. The empirical results suggest that
the inclusion of smaller structures (eg, ON) has limited
impact on the prediction for larger structures. Furthermore,
the model's performance continues to improve with the
number of available labeled scans. A violin plot depicted
in Figure 4 provides further insights, indicating that only
four labeled scans are necessary to achieve median sub‐mm

Table 1. Performance Comparison of the Registration Model Using Mean (std) for DSC and ASD (in mm) Computed Between Predicted and

Ground-Truth Segmentations Across Anatomical Structures

Labels

Registration network

1 Label 2 Labels 4 Labels 8 Labels

DSC ASD DSC ASD DSC ASD DSC ASD

NS 0.63 (0.07) 1.17 (0.21) 0.69 (0.03) 1.00 (0.11) 0.73 (0.06) 0.91 (0.16) 0.72 (0.08) 0.92 (0.24)

IT 0.67 (0.02) 1.20 (0.10) 0.77 (0.07) 0.85 (0.21) 0.78 (0.03) 0.84 (0.14) 0.77 (0.06) 0.93 (0.15)

MS 0.86 (0.06) 0.99 (0.47) 0.89 (0.05) 0.82 (0.35) 0.89 (0.04) 0.80 (0.34) 0.92 (0.04) 0.70 (0.28)

DSC value closer to 1 depicts higher overlap with the manual segmentations, while ASD close to 0 depicts higher agreement with the ground-truth shape.

Abbreviations: ASD, average surface distance; DSC, Dice Similarity Coefficient; IT, inferior turbinate; MS, maxillary sinus; NS, nasal septum.

Figure 3. Qualitative visualization of the three structures (from top to bottom: NS, IT, MS, and ON) where each row shows side (left), front

(middle), and lateral (right) view of heat map.
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ASDs for large sinonasal structures (NS: 0.96mm, IT:
0.74mm,MS: 0.43mm) across the entire dataset, while eight
scans are required for smaller structures like ON (0.8mm).

Qualitative Analysis
Heatmap visualizations of predicted segmentations com-
pared to the ground truth manual segmentations are
shown in Figure 3. It shows that the proposed framework
preserves the anatomical structures and their boundaries
with minimal errors. The discrepancies occur primarily at
the anterior aspect of the nasal septum which is a thin
plate of bone and cartilage compared to the 3D shapes of

the IT and MS. In a clinical context, anterior errors are
more tolerable than posterior errors as most surgical
work occurs deeper in the nasal cavity. However, such
errors do limit the generalizability of the DL framework
to structures that are located exclusively within the
operative field or are thin. Future iterations of the DL
framework will improve segmentation consistency across
anatomical structures making this concern less relevant.

Discussion
Accurate segmentation of key anatomical structures
within patient scans is a prerequisite for preoperative

Table 2. Performance Comparison of the Segmentation Model Using Mean (std) for DSC and ASD (in mm) Computed Between Predicted

and Ground-Truth Segmentations Across Anatomical Structures

Labels

Segmentation network

1 Label 2 Labels 4 Labels 8 Labels

DSC ASD DSC ASD DSC ASD DSC ASD

NS 0.69 (0.09) 1.32 (0.34) 0.81 (0.04) 0.93 (0.26) 0.84 (0.01) 0.75 (0.12) 0.84 (0.03) 0.62 (0.17)

IT 0.72 (0.02) 1.22 (0.07) 0.86 (0.04) 0.70 (0.24) 0.88 (0.02) 0.58 (0.16) 0.89 (0.04) 0.52 (0.18)

MS 0.88 (0.03) 2.19 (1.11) 0.92 (0.03) 1.15 (0.74) 0.93 (0.02) 1.14 (0.43) 0.94 (0.04) 0.48 (0.27)

DSC value closer to 1 depicts higher overlap with the manual segmentations, while ASD close to 0 depicts higher agreement with the ground truth shape.

Abbreviations: ASD, average surface distance; DSC, Dice Similarity Coefficient; IT, inferior turbinate; MS, maxillary sinus; NS, nasal septum.

Table 3. Performance Comparison of the Segmentation Model Using Mean (Std) for DSC and ASD (in Mm) Computed Between Predicted

and Ground-Truth Segmentations Across Anatomical Structures

Labels

Segmentation network

1 Label 2 Labels 4 Labels 8 Labels

DSC ASD DSC ASD DSC ASD DSC ASD

NS 0.61 (0.06) 1.60 (0.29) 0.57 (0.13) 1.62 (0.43) 0.77 (0.04) 0.97 (0.19) 0.83 (0.02) 0.72 (0.16)

IT 0.65 (0.06) 1.77 (0.41) 0.69 (0.10) 1.52 (0.55) 0.84 (0.06) 0.80 (0.25) 0.88 (0.03) 0.57 (0.17)

MS 0.92 (0.03) 0.63 (0.21) 0.85 (0.16) 0.97 (0.87) 0.88 (0.14) 0.75 (0.66) 0.95 (0.02) 0.45 (0.21)

ON 0.21 (0.15) 4.73 (5.04) 0.27 (0.20) 2.91 (1.87) 0.47 (0.15) 1.47 (0.70) 0.60 (0.14) 1.12 (0.64)

DSC value closer to 1 depicts higher overlap with the manual segmentations, while ASD close to 0 depicts higher agreement with the ground-truth shape.

Abbreviations: ASD, average surface distance; DSC, Dice Similarity Coefficient; IT, inferior turbinate; MS, maxillary sinus; NS, nasal septum.

Table 4. Performance Comparison of the Segmentation Model Using Median (Interquartile Range) for DSC and ASD (in mm) Computed

Between Predicted and Ground-Truth Segmentations Across Anatomical Structures

Labels

Segmentation network

1 Label 2 Labels 4 Labels 8 Labels

DSC ASD DSC ASD DSC ASD DSC ASD

NS 0.61 (0.04) 1.56 (0.28) 0.61 (0.12) 1.55 (0.41) 0.77 (0.05) 0.96 (0.3) 0.83 (0.03) 0.72 (0.16)

IT 0.66 (0.09) 1.68 (0.54) 0.69 (0.18) 1.44 (0.6) 0.84 (0.05) 0.73 (0.25) 0.88 (0.03) 0.56 (0.23)

MS 0.92 (0.03) 0.58 (0.33) 0.92 (0.06) 0.65 (0.45) 0.94 (0.08) 0.43 (0.57) 0.95 (0.01) 0.38 (0.09)

ON 0.16 (0.25) 3.05 (2.16) 0.27 (0.34) 2.25 (2.77) 0.5 (0.16) 1.18 (0.59) 0.65 (0.15) 0.8 (0.33)

DSC value closer to 1 depicts higher overlap with the manual segmentations, while ASD close to 0 depicts higher agreement with the ground-truth shape.

Abbreviations: ASD, average surface distance; DSC, Dice Similarity Coefficient; IT, inferior turbinate; MS, maxillary sinus; NS, nasal septum.
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planning workflows and development of patient‐
specific anatomical models for image‐ or robot‐guided
navigation systems. However, obtaining high‐quality
manual segmentation of relevant structures is difficult
and time‐consuming.22 In this study, it took an
experienced labeler about 15–20 hours to annotate
three structures within 10 scans in a head‐neck data
set using 3D Slicer while the well‐built DL model may
only take a few seconds to make automated inferences
for each scan.

Despite the recent success of DL‐based methods for
automated segmentation of anatomical structures, a key
drawback of such systems is the need for sufficiently large,
manual‐labeled datasets to develop robust models. In
contrast, the proposed method requires the users to
provide a much smaller sample of labeled segmentations
and a pool of unlabeled scans to facilitate effective
training of DL models. Empirical results demonstrate
that even four labels are sufficient to obtain sub‐mm
performance.

Despite being label‐efficient, a limitation of our frame-
work is the processing requirement to initially coregister
images. While image coregistration ensures consistent
geometry and voxel spacing, it can lead to loss of information
near anatomical boundaries. Another limitation of our

framework is the computational resource and time require-
ments for the joint training of the segmentation/registration
model. While the model's inference time is within 5 seconds,
the training requires 2 hours.

While the current segmentation pipeline has the
potential to facilitate preoperative planning, the utility
for intraoperative image guidance is determined by the
combined errors of anatomical segmentation and
endoscope‐to‐patient registration. This study has demon-
strated a crucial step towards the first of these two errors
by generating accurate volumetric segmentation of patient
anatomy on CT imaging.

Conclusion
This study presented a novel platform for automatically
segmenting structures of the nasal cavity achieving sub‐
millimeter accuracy. Unlike conventional semi‐automated
atlas‐based methods and resource‐intensive DL‐based
segmentation approaches, this automated framework
requires a lower number of manually segmented ground
truths, thereby showcasing its utility in a clinical setting
where limited time and resources preclude extensive
manual labeling. This framework can be utilized for
automation of pre‐operative planning workflows, as well

Figure 4. Plot depicting the performance of the segmentation model versus the number of labeled scans used for training the deep learning

(DL) framework—DSC (left) and average surface distance (ASD) (right). Violin plots illustrate the distribution of ASD scores for our method.

Each “violin” represents the accuracy of the model's predictions across whole dataset. The wider parts of the violins show where most of the

ASD values lie. The white dot inside each violin represents the median accuracy, while the black vertical lines extending from the violins

indicate the range of typical scores. The shape and spread of these violins across different label subgroups show that the performance of the

model increases with the number of labeled scans. The median score (white dot) across different label subgroups shows that only four labeled

scans are necessary to achieve sub-mm ASDs for large sinonasal structures—NS (0.96 mm), IT (0.74 mm), and MS (0.43 mm), whereas eight

scans are required for critical structures—ON (0.8 mm).

Sahu et al. 7



as construction of statistical shape models to quantify
population variations. Furthermore, this pipeline
has the potential to interface with image‐guidance
navigation systems and could therefore assist in under-
standing the location of critical anatomical structures
during surgery. Future work will focus on evaluating
the adaptability of this pipeline to various sinonasal
structures, datasets, and imaging modalities, including
MRI. The ongoing development of methods capable of
accurate segmentation in a label‐efficient manner holds
promise for facilitating large‐scale studies and estab-
lishing a foundation for effective intra‐operative surgical
guidance.
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