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Abstract

Objective. Obtaining automated, objective 3-dimensional (3D)

models of the Eustachian tube (ET) and the internal carotid

artery (ICA) from computed tomography (CT) scans could

provide useful navigational and diagnostic information for ET

pathologies and interventions. We aim to develop a deep

learning (DL) pipeline to automatically segment the ET and

ICA and use these segmentations to compute distances

between these structures.

Study Design. Retrospective cohort.

Setting. Tertiary referral center.

Methods. From a database of 30 CT scans, 60 ETand ICA pairs

were manually segmented and used to train an nnU-Net model,

a DL segmentation framework. These segmentations were also

used to develop a quantitative tool to capture the magnitude

and location of the minimum distance point (MDP) between ET

and ICA. Performance metrics for the nnU-Net automated

segmentations were calculated via the average Hausdorff

distance (AHD) and dice similarity coefficient (DSC).

Results. The AHD for the ETand ICAwere 0.922 and 0.246mm,

respectively. Similarly, the DSC values for the ET and ICA were

0.578 and 0.884. The mean MDP from ET to ICA in the

cartilaginous region was 2.6mm (0.7-5.3mm) and was located

on average 1.9mm caudal from the bony cartilaginous junction.

Conclusion. This study describes the first end-to-end DL

pipeline for automated ETand ICA segmentation and analyzes

distances between these structures. In addition to helping to

ensure the safe selection of patients for ET dilation, this

method can facilitate large-scale studies exploring the

relationship between ET pathologies and the 3D shape of

the ET.
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Obstructive Eustachian tube dysfunction (ETD) is
characterized by a wide spectrum of symptoms,
including ear fullness, pressure, pain, and hearing

loss, among others, due to an inability of the middle ear to
regulate pressure adequately.1 Current research estimates the
prevalence of ETD to be around 1% to 2% of the population,
with some studies reporting rates as high as 4.6%.2,3 Despite
its prevalence, the diagnosis and management of obstructive
ETD have significant room for improvement under the
current standard of care.4 For instance, in otitis media with
effusion, which is likely related to obstructive ETD, the use of
medical therapies including nasal steroids, antihistamines,
antibiotics, and so forth, remains ineffective.4

Due to the lack of robust, objective data obtained from
current diagnostic tools for ETD, clinicians have turned
toward imaging such as computed tomography (CT) or
magnetic resonance imaging (MRI) to understand better
the Eustachian tube's (ET's) structure along its cartilagi-
nous and osseous components.5‐8 However, most radio-
graphic morphology measurements have been done from
a 2‐dimensional (2D) perspective, and due to the complex
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3‐dimensional (3D) structure of the ET, these results have
been difficult to translate into the clinical domain.7

Creating a 3D rendition of the ET would allow clinicians
to study the intricate anatomy of this structure further
and pave the path for correlating certain parts of the tube
(eg, pharyngeal orifice) to patient‐reported symptoms and
nearby anatomical structures.

Generating 3D models of the ET and nearby critical
structures may also improve the understanding and manage-
ment of ETD. Since Food and Drug Administration
approval in 2016, Eustachian tube balloon dilation (ETBD)
has become a common operative treatment of ETD.9,10

Although rare, one of the most feared complications of the
ETBD is damage to critical structures, including the internal
carotid artery (ICA).11,12 Given the potential severity,
understanding the distance between the ICA and ET
(dICA) remains crucial in the preoperative evaluation of
patients undergoing ETBD. To assess for dICA, patients
typically receive a temporal bone CT scan before ETBD.13

Prior groups have quantified dICA from such scans by
manually measuring distances at various points along the
ET.2,14 However, the manual measurement of this task is
time‐consuming and prone to interreader variability.15

Further, this task is typically done along 2D slices, which
can misrepresent the true spatial distance between the ET
and ICA. Creating accurate 3D representations of the ET
and ICA and automatically calculating the distance between
these structures would augment the preoperative evaluation
and could further decrease the risk of injury to the ICA
during ETBD.

Despite the advantages of 3D analysis, manual construc-
tion of the 3D models of the ET and ICA is a time‐
consuming, technically difficult task and difficult to apply to
large population datasets. However, recent advances in deep
learning (DL) enable researchers to automatically segment
structures from CT scans to create accurate 3D models.16

Our group has previously successfully developed autono-
mous pipelines for automatically segmenting structures of
the temporal bone.17 In this study, we aim to build on this
prior work to develop a DL pipeline to (1) automatically
segment the ET and ICA and generate accurate 3D models
from CT scans and (2) extend this pipeline to automatically
extract the minimum dICA from these 3D models. We hope

this can serve as the foundation to allow our field to harness
large‐scale radiographic datasets to understand ET anatomy
better and use radiographic assessments to aid in the future
diagnosis and management of ET pathologies.

Methods
Figure 1 summarizes the proposed end‐to‐end pipeline to
segment the ET and ICA from CT scans using DL and to
analyze the minimum distance between the ET and the
ICA from the segmentations.

Ethics
This study was approved by the Institutional Review
Board at Johns Hopkins School of Medicine. Prior to
manual annotation of the high‐resolution CT images,
they were deidentified and defaced by removal of the soft
tissue structures of the face.

Ground Truth Segmentation Dataset
This study used an anonymized dataset of 30 head and
neck CT scans without contrast of patients with no
apparent craniofacial abnormalities to assess 60 ETs. The
resolution of the axial cuts of the CT scans was 512 × 512
pixels with a slice thickness of 0.4 mm. Each scan was
manually segmented by an otolaryngologist (A.A.) and
used to generate 3D models of the ET and the ICA in 3D
Slicer®.18 The bony and nasopharyngeal portions of the
ET were labeled by segmenting the air‐soft tissue gap in
both locations, respectively. For the cartilaginous por-
tion, the lumen of ET may be difficult to discern; to
resolve this, the annotator applied a local histogram to
better discern the lumen from the soft tissue of the
surrounding structures. The ET models were subdivided
into 2 regions: the bony portion (within the temporal
bone) of the ET and the cartilaginous region. The bony
portion of the ET tube was defined as beginning at the
tympanic ostium and ending at the isthmus, the narrowest
point along the ET (referred to as the bony cartilaginous
[BC] junction in this paper). The cartilaginous region was
defined from the BC junction to the opening of the
nasopharynx. The ICA was segmented from the petrous

Figure 1. Overview of the method to (1) segment ET and ICA and (2) compute the distance heatmap between them. dICA, distance

between the ICA and ET; ET, Eustachian tube; ICA, internal carotid artery.
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segment to the vertical portion for each scan. An
additional rater (A.J.) manually segmented the ET across
the 30 scans to further support the accuracy of the ET
segmentations. ICA segmentations were not repeated as
these are well defined structures with well‐defined bony
borders on CT scans. A senior otolaryngologists (F.X.C.)
reviewed and revised the segmentations if any significant
discrepancies were identified among the 2 raters.

Interrater Segmentation Comparison
Multiple metrics were used to compute differences between
raters' segmentations including average Hausdorff distance
(AHD), dice similarity coefficient (DSC), and Cohen
κ coefficient. AHD was calculated to measure the distance
in mm between 2 pointsets (ie, rater 1 and rater 2).19 For
this, the closest distance between each point on both raters'
segmentation is determined, and the average of the
distances is calculated to result in the AHD achieving
submillimeter accuracy. The DSC was calculated as the
secondary outcome, determining the volumetric overlap
between the 2 raters.20 A score of 1 correlates with
perfect overlap, whereas 0 indicates no overlap.20 In
addition to AHD and DCS, Cohen κ coefficient is often
used to computer interrater agreements in medical image
segmentations.21 It is represented by the formula below,
where TP = true positive, TN= true negative, FP = false
positive, and FN= false negative. In general, k scores
above 0.4 are in moderate agreement or better

−
k = 2 ×

TP × TN FN × FP
(TP + FP) ×(FP + TN) + (TP + FN) ×(FN + TN)

.

DL Framework
Before creating the DL segmentation network, we ensured
the CT scans were co‐aligned using the Advanced
Normalization Tools software.22 To train the segmentation
network, we used nnU‐Net, a supervised DL framework
providing state‐of‐the‐art image segmentation within the
medical domain.16 The co‐aligned scans and corresponding
segmentations were passed through the nnU‐Net DL. Five‐
fold cross‐validation with 100 epochs per fold was utilized
to train the final model. In each fold, the dataset was
assigned to a training and testing set in a 0.7:0.3 fashion (25
training scans, 5 test scans). Via this configuration, each
image would be assigned to a testing set in at least one of
the folds to account for overfitting. Upon completion of
training, the framework selected the best model based on
its validation performance. Predictions (ie, inference) were
then provided on the test images, unseen by the model
during training.

To quantify the performance of our DL framework, we
utilized multiple measurement tools to compare the
predictions' accuracy to the ground truths created by
A.A. and A.J. Ground truths created by A.J. were not
used during the training process. For our primary and

secondary outcome, the AHD and DSC were similarly
utilized as highlighted above in ‘Inter‐Rater Segmentation
Comparison’.

dICA Tool
After the automated generation of the 3D models of the
ET and ICA, the models were analyzed using the dICA
tool to extract the magnitude and location of the
minimum distance point (MDP). The proposed tool was
built using Python and existing packages within 3D
Slicer.18 As shown in Figure 2, using the Model‐to‐Model
Distance subpackage in 3D Slicer, a distance heat map
was automatically generated, in which brighter colors
corresponded to decreased distance between the 2 models.
This heat map was further analyzed to determine the
magnitude of this minimum distance and its location on
the surface ET mesh (point labeled in Figure 2). The
model‐to‐model distance subpackage calculates the
Euclidean distance between 2 mesh point clouds and has
been validated in prior papers.23 The magnitude of the
minimum distance was also manually calculated to verify
the accuracy of the automated tool.

To determine the location of the MDP, a center line
(shown in Figure 1) through the ET was computed using
the Vascular Modeling Tool Kit subpackage in 3D
Slicer.24 Once the center line was computed through the
lumen of the ET, the MDP was projected onto this line to
compute the location of the MDP along the center line.
The magnitude and location of the MDP were calculated
for the 60 ETs in the dataset used for the DL framework.

Figure 2. A 3D mesh model of ET with a centerline created

through the cartilaginous segment. The calculated minimum

distance between the cartilaginous region and ICA is shown with

labeled point mid-distance—1. Bony segment and ICA are also

shown. 3D, three dimensional; ET, Eustachian tube; ICA, internal

carotid artery.
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Analysis of dICA Along ET
The proposed dICA tool was also expanded to analyze the
MDP's magnitude along the entire ET course. Such
analysis would be useful to understand how the distance
from the ET to the ICA changes as a balloon catheter is
advanced along the ET during ETBD. To simulate a
balloon catheter, a sphere with a radius of 2.5 mm (balloon
catheters typically have a diameter of 3‐6mm) with center
points derived from the centerline was created within the
software. The intersection of this sphere with the ET model
generated a range of surface points on the heat map shown
in Figure 2. The average distance from the ET to ICA was
computed from this set of points. This process was
programmatically repeated for all the points along the
centerline for each ET. The time to extract the location and
magnitude of the MDP ranged in the order of milliseconds.
This data was further analyzed using Matlab®.

Results
The performance metrics assessed via the DL pipeline can
be visualized in Figure 3A and B. Models generated by
the DL pipeline were primarily compared against the
ground truths created by AA. All segmented structures
achieved submillimeter AHD: ET 0.922 ± 0.128 mm and
ICA 0.284 ± 0.026 mm. For our secondary outcome, ICA
and ET had an average DSC of 0.892 ± 0.052 and
0.575 ± 0.140, respectively. The model achieved similar
performance when compared against rater A.J.'s ET

segmentations: AHD of 0.881 ± 0.105 mm and DSC of
0.59 ± 0.116. The total training time using the 5‐fold
method described above for the nnUnet was around
450 minutes using an RTX 3090 GPU. The inference
portion took, on average, 47 seconds per scan for
23.5 minutes for all test images.

As mentioned above, the dICA tool outlined above
captured the MDP's magnitude and its location along the
ET. As shown in Figure 4, the mean magnitude of the
MDP along the cartilaginous region was 2.6 mm (stan-
dard deviation 0.9 mm, range 0.7‐5.3 mm) and 1.0 mm
within the bony region (standard deviation 0.5 mm, range
0.1‐2 mm). The difference between the bony and the
cartilaginous region was statistically significant (P< .001).
On average (n = 60), the MDP occurred approximately
1.9 mm caudal from the BC junction (standard deviation
2.1 mm, range 0‐7.6 mm).

Analysis of the dICA magnitude along the course of
the ET beginning from the BC junction is shown
in Figure 5. The data was subdivided into 2 mm regions
(Table 1). The covered region ranged from the BC
junction to the 20mm caudal of this junction, as most
pathology occurs within this region.10 A fifth‐degree
polynomial was fit using the raw data to explore how
distance to the ICA changes throughout the course of the
ET, starting from the BC junction toward the nasophar-
yngeal opening. We observed that the distance to the ICA
increased (slope of orange curve > 0) around 1.9 mm from
the BC junction.

Figure 3. (A) Average Hausdorff distances between the “Ground Truth” segmentations and “Predicted” segmentations for ET and ICA.

(B) Dice similarity coefficients between the “Ground Truth” segmentations and “Predicted” segmentations for ET and ICA. ET, Eustachian

tube; ICA, internal carotid artery.
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Additionally, the minimum distance was manually
calculated and compared to the distance generated from
the tool, as shown in Figure 6, to assess accuracy. There
was no statistical difference between manual calculations
and those generated by the dICA tool (P= .24).

As mentioned above, to further validate the accuracy
of the ground truth labels, a second rater annotated the
dataset; these ratings were compared to the original
dataset using AHD, DSC, and κ scores. In our analysis,
the AHD between the raters was equal to 0.51 mm and
the DSC score between the 2 raters was 0.65. The average
k score was equal to 0.61, and we found k to be less than
0.4 for only 1 scan.

Discussion
ETD is a complex medical condition with no established
set of diagnostic tools for management. While the ET is a
dynamic structure, a better understanding of its 3D
radiographic anatomy could allow for the development of
future imaging‐based criteria to help augment existing
assessment methods for diagnosing and managing ETD.
The proposed pipeline outlines an automated method for
segmenting and creating 3D models of the ET and ICA
from CT scans. We propose a clinically relevant exten-
sion, extracting the distance between ICA and the ET for
ETBD preoperative assessment. While this pipeline alone

is not sufficient to be used in diagnosing ET pathologies,
the creation and validation of this method is a first step in
developing large population data sets to understand
better the static geometric characteristics of normal and
pathologic ET, as well as differences among different age
and ethnic groups.

Beyond ETBD preoperative assessment, this pipeline has
numerous potential clinical implications. Recently, groups
have started testing CT‐guided balloon catheter navigation
systems for ETBD to avoid injury to ICA.25 Integrating this
tool into such systems could facilitate rapid distance
assessment to the MDP as the surgeon advances the balloon
catheter. Additionally, automatically creating 3D models of
the ET and ICA and analyzing distances between them
could facilitate large‐scale radiomics studies, which play a
role in understanding how various pathologies impact the
shape and spatial relationships between these structures.
This tool's function can also be expanded to assess other
clinically relevant structures segmented from CT scans.

We assessed this DL nnU‐Net's accuracy via the
AHD and DSC. The AHD metric is more robust and
reliable for thin structures (ie, ET), whereas the DSC
metric is more prone to variability for small and/or thin
structures.17,19,20,26 As a result, we placed a larger
emphasis on the AHD metric as this would better
capture the performance for our segmented structures.
For the AHD, we achieved submillimeter accuracy with

Figure 4. Box and whisker plot of minimum distance to ICA by ET region. ET, Eustachian tube; ICA, internal carotid artery.
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the ET (AHD 0.992 mm) and the ICA (AHD 0.246 mm).
Furthermore, the average DSC score for the ICA was
0.882, demonstrating high accuracy with this structure.
Generally, a DSC score of 0.7 and above corresponds to
successful radiographic overlap.20 Although the DSC
for the ET was below this threshold (0.575), this was
primarily due to the thin nature of the ET structure.

Previous experiments have confirmed that the smaller
the structure of interest, the lower the DSC score.27 In
our study, the loss in the DSC coefficient was primarily
attributed to the mid‐cartilaginous segment of the ET.
The thickness of the mid‐cartilaginous segment was at
times 1 to 3 voxels during annotation, and even a small
discrepancy between the ground truth and prediction
would result in a significant penalty when calculating
this metric.

As mentioned above, prior groups have manually
explored minimum dICA, given its importance in preopera-
tive planning, which can be time‐consuming and subject to
poor interrater reliability.2,14,28 Olander et al. measured
distances between the ICA and ET along 3 separate points:
the BC junction, the mid‐cartilaginous ET point, and the
nasopharyngeal orifice. They found the minimum distance
to be 4.2, 24.5, and 61.9mm, respectively.2 The minimum
distance reported in Figure 3, while in the range of this
work, is slightly smaller. This can be attributed to 2 factors:
(1) the proposed tool measured surface‐to‐surface distances,
whereas Olander et al measured from the ET lumen to the
ICA, and (2) as shown in Figure 5, while the distance to
ICA generally decreases closer to the BC junction, the
location of the minimum distance occurs approximately
1.9mm away from the BC junction rather than at the
junction. Additionally, Olander et al acknowledge that an
assumption in their study was that minimum distance lies

Figure 5. Distance from BC junction versus distance to ICA; dots represent the average distance to ICA along an individual ET at a given

distance from the BC joint. The line is a fitted fifth-order polynomial curve generated from dots. BC, bony cartilage; ET, Eustachian tube;

ICA, internal carotid artery.

Table 1. Distance to ICA Along the ET

Distance from

BC

junction (mm)

Average

distance to

ICA (mm)

Standard

deviation of

distance to

ICA (mm)

Range of

distance to

ICA (mm)

0-2 3.9 1.28 1.5-6.6

2-4 3.9 1.1 1.4-6.9

4-6 4.1 1.0 1.3-7.0

6-8 4.7 1.2 1.1-8.3

8-10 5.8 2.1 1.2-11.7

10-12 6.6 2.3 1.8-13.9

12-14 7.3 2.5 3.5-15.5

14-16 8.5 2.5 4.4-17.1

16-18 10.3 2.5 5.5-19.2

18-20 11.2 2.5 6.3-20.0

Abbreviations: BC, bony cartilaginous; ET, Eustachian tube; ICA, internal

carotid artery.

6 Otolaryngology–Head and Neck Surgery 00(00)



along a 2D plane, even though the ET is angulated.2 By
using 3D mesh files to study spatial geometries, the
proposed tool does not have this limitation.

There are several limitations present within the context
of this study. First, the image volumes were supine,
noncontrast CT images of the head and did not include a
Valsalva maneuver for enhanced visualization of the ET.
As a result, manual annotation along the middle aspect of
the ET was difficult to decipher, which may have led to an
inaccurate ground truth along that segment. However,
having high κ scores when comparing with a second rater
and a senior otolaryngologists verify annotations sup-
ports the accuracy of the segmentations. Future studies
could use other imaging modalities, such as MRI, that are
more sensitive to soft tissue. Second, to train and
implement the DL framework, we required access to a
workstation with specific computational requirements
that may not be available at all centers. Using computa-
tionally efficient DL algorithms in the future could reduce
the barrier required to implement such models.

Conclusion
To the authors' knowledge, this study describes the first end‐
to‐end DL pipeline for (1) automated ET and ICA
segmentation and (2) analysis of distances between these
structures. As such, this pipeline can be applied to safely

select patients for ETBD and future radiographic assessments
focused on improving our anatomical and clinical under-
standing of the ET. Future work will be targeted at
improving the pipeline's accuracy and understanding spatial
relations between other relevant structures.
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